_
Ω
7
α
N
0
Ω
Ξ
٥
Ω
٠.
₹
≥
>
≥
Ś
Ω
+
Ξ
4

	STUDY MODULE DESCRIPTION FORM						
	the module/subject	ering		Code 1010325321010311585			
Field of study Electrical Engineering			Profile of study (general academic, practical) general academic	Year /Semester			
Elective path/specialty			Subject offered in: Polish	Course (compulsory, elective) obligatory			
Cycle of study:			Form of study (full-time,part-time)				
Second-cycle studies			part-time				
No. of h	ours			No. of credits			
Lectur	e: 10 Classe	es: - Laboratory: 10	Project/seminars:	- 2			
Status o	f the course in the stud	y program (Basic, major, other)	(university-wide, from another f	ield)			
major			university-wide				
Education areas and fields of science and art				ECTS distribution (number and %)			
Responsible for subject / lecturer:							
dr inż. Wojciech Sikorski email: wojciech.sikorski@put.poznan.pl tel. (61) 665 20 35 Wydział Elektryczny ul. Piotrowo 3A 60-965 Poznań							
Prerequisites in terms of knowledge, skills and social competencies:							
Student has basic knowledge about physical phenomena occurring in insulating mat							
1	Knowledge	Student has knowledge about to	vpical construction of high volta	ge equipments and apparatus			

| competencies | Assumptions and objectives of the course:

apparatus

Construction of high-voltage equipment and insulation systems. The methods for proper selection of high-voltage insulation materials. The parameters and physical phenomena in diagnostics of high-voltage equipment. The review of modern diagnostic techniques and assessment of the insulation condition of high-voltage equipment. The digital processing and proper interpretation of measurement data for assessment of high-voltage equipment condition.

Student has the ability to work and collaborate in groups

Student has the ability to design the basic high-voltage insulation systems

Student has the ability to conduct basic diagnostic tests on high-voltage equipments and

Study outcomes and reference to the educational results for a field of study

Knowledge:

Skills

Social

2

3

- 1. Student has knowledge about physical phenomena occurring in high-voltage insulation systems [K_W03++]
- 2. Student has knowledge about design of high-voltage insulation systems [K W05+++]
- 3. Student has detailed knowledge about high voltage equipment diagnostics; Student has knowledge in the area of elaborating of experiment results [K_W11+++]
- 4. Student has extended knowledge about construction and functioning of high-voltage equipment insulating systems [K_W15+++]

Skills:

- 1. Student can process and properly interpret measurement data to evaluate technical condition of high-voltage equipment -[K_U03+++]
- 2. can apply an adequate diagnostic method to evaluate condition of high-voltage equipment insulation system [K_U09++]
- 3. Student can gain information based on literature and other sources related to construction and diagnostic methods of high-voltage equipment [K_U01++]

Social competencies:

- 1. Student is aware of the role of high-voltage equipment diagnostics in assuring continuity of energy supply for industry and population [K_K02++]
- 2. Student is aware of threats scale and influence of high-voltage equipment breakdown results on natural environment naturalne [K_K02++]

http://www.put.poznan.pl/

Assessment methods of study outcomes

Lectures:

- evaluation of knowledge and skills proven on written or oral examinations during examination session

Laboratory classes:

- tests and rewarding knowledge necessary to realise basic problems in the given laboratory task field
- continuous evaluation, on each class rewarding improvement of ability to use the known rules and methods,
- evaluation of knowledge and skills related to realisation of laboratory task, evaluation of report on task carried out
- evaluation of knowledge and skills proven on written or oral test

Course description

LECTURE:

- Construction of high voltage equipment and systems
- Ageing processes occurring in high-voltage insulation systems
- Problems of partial discharges occurring in high voltage insulation systems
- Problems of moisture of paper-oil insulation
- Methods of high-voltage equipment diagnostics:
- a) methods of partial discharges detection (HF, UHF, EA, conventional),
- b) evaluation methods of insulation system moisture content (Karl-Fischer, FDS, PDC, RVM, capacitive probe),
- c) detection methods of power transformer windings deformation (FRA/SFRA),
- d) methods

LABOARTORY:

- 1. Detection and location of partial discharges using acoustic emission method (EA)
- 2. Measurement of partial discharges using conventional electric method (PN-EN 60270)
- 3. Detection of partial discharges registered in HF/UHF frequency band
- 4. Detection of power transformer insulation system defects basing on analysis of gases dissolved in insulation oil
- 5. Evaluation of moisture content insulation system using physicochemical methods (Karl-Fischer, capacitive probe)
- 6. Evaluation of moisture content insulation system using physicochemical methods (FDS/PDC/RVM)
- 7. Detection of power transformer windings deformation using FRA/SFRA method

Basic bibliography:

- 1. Florkowska B., Diagnostyka wysokonapięciowych układów izolacyjnych urządzeń elektroenergetycznych, Wydawnictwo AGH Kraków, 2009
- 2. Gulski E., Diagnozowanie wyładowań niezupełnych w urządzeniach wysokiego napięcia w eksploatacji, Prace Naukowe Politechniki Warszawskiej, 2003
- 3. Flisowski Z., Technika wysokich napięć, WNT Warszawa, 2009
- 4. Gacek Z., Wysokonapieciowa technika izolacyjna, Wydawnictwo Politechniki Śląskiej, Gliwice, 2006
- 5. Mościcka-Grzesiak H., pod red., Inżynieria wysokich napięć w elektroenergetyce, Wydawnictwo Politechniki Poznańskiej, tom I ? 1996, tom II ? 1999
- 6. Fleszyński J., pod red., Laboratorium wysokonapięciowe w dydaktyce i elektroenergetyce, Oficyna Wydawnicza Politechniki Wrocławskiej, 1999

Additional bibliography:

1. Kuffel E., Zaengl W., Kuffel J., High Voltage Engineering. Fundamentals, Butterworth-Heineman, 2001

Result of average student's workload

Activity	Time (working hours)
Participation in lecture classes	10
2. Participation in laboratory classes	10
3. Consultations	5
4. Preparation for examination	10
5. Preparation for laboratory classes	7
6. Preparation of reports	10
7. Participation in examinations	3

Student's workload				
Source of workload	hours	ECTS		
Total workload	55	3		
Contact hours	28	1		
Practical activities	40	2		